

LIPID GUIDELINES- CONTROVERSIES TO CONSENSUS: INDIAN PERSPECTIVE

Dr. Siddhartha Mani
Consultant Interventional Cardiologist
R.N. Tagore Hospital
Kolkata

NEW GUIDELINES

- In November 2013, ACC and AHA published a set of guidelines on the control of blood cholesterol to reduce atherosclerotic cardiovascular disease (ASCVD) risk in adults.
- The quantum shift away from the previous set of guidelines, has created controversy and confusion about the relative merits of these new ACC/AHA guidelines .

ACC/AHA VS ESC/EAS GUIDELINES

- ACC/AHA guideline committee evaluated only RCT evidence. In contrast, the ESC/EAS guidelines consider all the available evidences, not only RCTs.
- ESC/EAS guidelines provide guidance on elevated TG including the relevance of identifying and treating secondary causes.
- The ACC AHA guidelines don't recommend any other drugs beside statins

ACC/AHA VS ESC/EAS GUIDELINES

- The ACC AHA guidelines deals with risks rather than goals.
- The ACC AHA guideline doesn't adequately address the management of the group who cannot tolerate recommended statin doses.
- But both the guidelines ESC and ACC/AHA identifies LDL as the most important risk factor and both recommend behavioural and lifestyle modifications concurrent to drug therapy.

ACC/AHA & ESC- SIMILARITIES

- Both the 2013 ACC/AHA and 2011 ESC/EAS guidelines conclude that LDL-C is unequivocally a causal factor for ASCVD.
- Both the 2013 ACC/AHA and 2011 ESC/EAS guidelines have systematically evaluated scientific evidence.
- Both the 2013 ACC/AHA and 2011 ESC/EAS guidelines encourage lifestyle modification and the engagement of the patient as a partner in disease prevention.

WHOM TO TREAT

- Both the 2013 ACC/AHA and 2011 ESC/EAS guidelines clearly identify four patient groups at the greatest risk of ASCVD.
 - Those with established ASCVD
 - Diabetes Mellitus,
 - Familial Hypercholesterolaemia
 - A high predicted CVD risk based on global risk assessment.

DEFINITION OF ASCVD VARIES

- ACC/AHA defines this as acute coronary syndromes, previous MI, stable angina, prior coronary or other revascularization, ischaemic stroke or TIA, and atherosclerotic PAD
- In contrast, the ESC/EAS include all those mentioned in the ACC/AHA guidelines, but also include any pre-clinical evidence for atherosclerotic disease on the basis of any imaging modality.

ABOUT THE RISK FACTORS

- ACC/AHA guidelines do not include chronic kidney disease (CKD), whereas the ESC/EAS guidelines consider those with CKD (as defined by a GFR < 60 mL/min/1.73 m²) as a very high-risk group.
- The ESC/EAS guidelines also recognize that there may be other factors such as elevated TG, social deprivation, central obesity, elevated Lp(a), subclinical atherosclerosis, or F/H of premature CVD which may further modify absolute risk.

A GREATER EXPENDITURE TO THE PUBLIC HEALTH BUDGET.

- ACC/AHA recommends statin treatment for primary prevention in individuals with a 10-year ASCVD risk of 7.5% or higher
- Previous guideline recommendations considered a substantially higher threshold for 10-year risk.
- The ACC/AHA 10-year threshold of 7.5% corresponds to a 2.5% risk for CVD death over 10 years in the SCORE model and are considered at moderate risk by ESC/EAS.
- Thus, the ESC/EAS guidelines allows some scope for lifestyle modifications before medication are added.
- Patients are more likely to receive medications under the new ACC/AHA guidelines.

IMPACT OF HIGH DOSE STATINS ON TOLERANCE IN A WIDE GROUP

- Lowering the threshold for statin initiation in the primary prevention setting will help young people with low short-term CVD risk but high-lifetime risk who will be initiated on statins earlier and will have a greater impact on the disease process.
- However practically all older individuals (>70 years) because of the impact of age on 10-year ASCVD risk, will now be offered moderate- to high-intensity statins. As co-morbidities and tolerability of these agents becomes more of a concern in this age group, the potential for harm is much greater.

RISK ASSESSMENT TOOLS IN PRIMARY PREVENTION

- The SCORE risk algorithm works well in Europe.
- The ACC/AHA mixed pooled cohorts equation did not work well in three North American populations overestimating risk and requires much greater scrutiny before use.
- Inaccurate in many Asians and Pacific Islanders.

MEASUREMENT OF LDL-C LEVELS

- The ESC/EAS guidelines place considerable weight to the measurement of LDL-C to determine future CVD risk
- They provide an algorithm - SCORE risk which combines clinical profile with measured LDL-C levels.
- This is of advantage as for general physicians it highlights the importance of screening for genetically elevated LDL-C levels.

LDL-C SCREENING AS PER ACC/AHA

- ACC/AHA guidelines doesn't mandate LDL-C measurement, if absolute risk is high enough to warrant statin therapy.
- Thus many cases of familial hypercholesterolaemia may remain undiagnosed.

TREAT TO TARGET- NO LONGER CONSIDERED APPROPRIATE STRATEGIES

- ◉ This strategy has been the most widely used in the past 15 years but there are 3 problems with this approach.
 - First, current clinical trial data do not indicate what the target should be.
 - Second, the magnitude of additional ASCVD risk reduction with one target lower than another is not known .
 - Third, it does not take into account potential adverse effects from multidrug therapy that might be needed to achieve a specific goal.

*Specific LDL target of 100 or 70 were part of
ATP III 2004 update and
ACC/AHA guidelines for CHD patients in 2006

ABSENCE OF TARGET: ISSUES

- May lead to under-treatment in those with familial hypercholesterolemia with very high initial lipid levels.
- May lead to over-treatment in those with very low levels of LDL-C.
- Underestimates the role of Non-HDL cholesterol or other lipid fractions which has detrimental effects in atherogenic dyslipidemia specially among Indians.

ACC/AHA GUIDELINES: FEW CAVEATS

- **Lower is best:**
 - this approach was not taken because it does not consider the potential adverse effects of multidrug therapy with an unknown magnitude of ASCVD event reduction
- **Treat to level of ASCVD risk:**
 - A modified version of this approach was taken that considers both the ASCVD risk reduction benefits and the adverse effects of statin treatment
 - By focusing treatment on the 4 statin benefit groups, the approach is practical and simpler to implement than the past strategies
- **Lifetime risk of ASCVD:**
 - These are problematic because of the lack of data on the long-term follow-up of RCTs >15 years

- ACC/AHA guidelines treat risk alone
- ESC/ EAS guidelines treat risk, create a greater understanding of the role of LDL-C in CVD risk assessment, and use LDL-C monitoring for measuring therapeutic efficacy and patient compliance.

OTHER LIPID FRACTIONS

- ESC/EAS guidelines have given importance on the role of other lipid fractions such as TG-rich lipoproteins, remnants, and conditions associated with low HDL-C where LDL-C may not be as informative as non-HDL-C or apoB, but for which there are clear data (Class IIa, Level B).

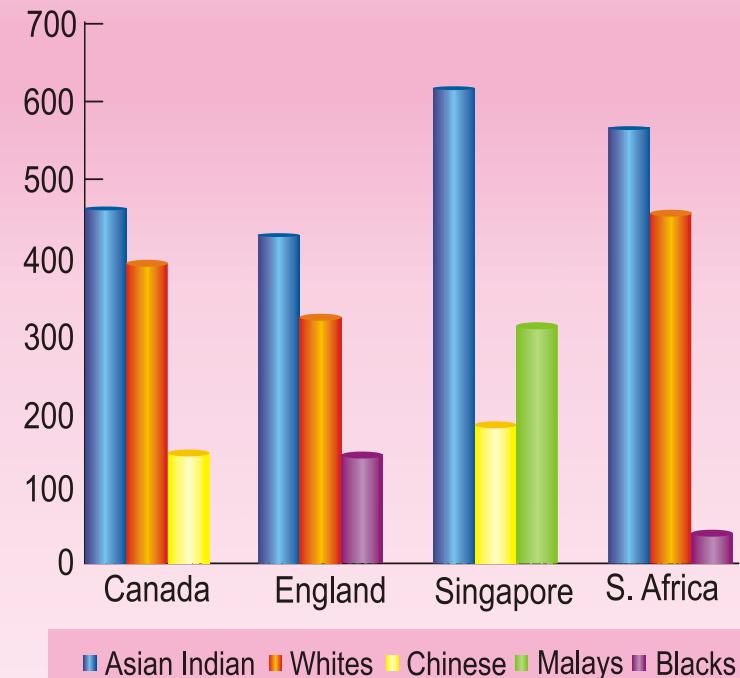
CONTROVERSY REGARDING HIGH & MODERATE INTENSITY -STATIN DOSES

- High-intensity statin treatment is defined as those regimens which reduce LDL-C by $\geq 50\%$.
- Rosuvastatin 40mg is not endorsed as RCT outcomes tested high intensity statins, even though it is Food and Drug Administration (FDA) approved.
- Moderate-intensity statin treatment (assessed in outcomes studies) is defined as regimens which reduce LDL-C by 30-50%
- Again atorvastatin 20 mg and rosuvastatin 5 are not tested in RCTs but are FDA approved doses.

RECOMMENDATION: NO RCT EVIDENCE OR CONFUSING

- ◉ 50% reduction of LDL
- ◉ Baseline LDL in those already on statin Rx
- ◉ Atorvastatin 20 mg and Rosuvastatin 5 and 40mg
- ◉ Reduce statin dose if LDL <40
- ◉ Rosuvastatin in secondary prevention

INDIAN PERSPECTIVE


CHD IN SOUTH ASIANS

- Prone to develop CHD at a younger age, often before the age of 40 years in men.
- More likely to have an anterior location of infarction.
- More likely to have significant left main, multivessel, and diffuse coronary artery disease.
- Similar or lower prevalence of traditional risk factors than with other populations.
- Prevalence of diabetes mellitus is uniformly higher in South Asians.⁷

WHY DO INDIANS NEED TO WORRY?

- **3-5 fold increase** in the risk of MI & CVD
- **Highest CHD mortality**
- CHD onset even **before 40**
- Significant left main and multivessel CAD at catheterization
- **Younger at the time of first hospitalization** for heart failure

CHD mortality rates of men in different countries: Asian Indians vs other ethnic groups. Rates are age-standardized per 100,000/year.

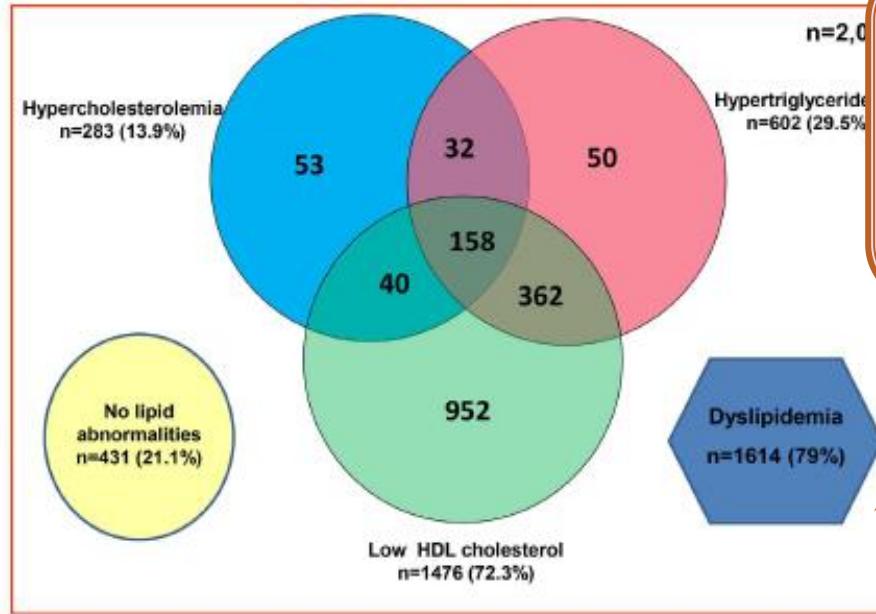
Enas EA et al. Indian Heart J 1996; 48: 727-32.

WHY IS CHD INCREASING IN INDIANS ?

1. Urbanization
2. Life Style Changes
3. Smoking
4. High Prevalence of Hypertension
5. Diabetes Mellitus
6. Dyslipidemia
7. Obesity – Truncal
8. High fat Intake
9. Lack of Physical activity
10. Stress

Enas EA et al. *Indian Heart J* 1996; 48: 727-32.

INDIAN DYSLIPIDEMIA


- High Triglyceride levels
- Low levels of HDL
- High levels of small dense LDL
- Moderate increase in LDL levels
- ↑ Lp(a) → 10 times more atherogenic than LDL-C
- ↑↑ Insulin resistance syndrome
- TC / HDL > 4.5 present in 42% of urban India
- Lp(a) > 30 mg/dl in 25% of Indians (CADI study)

Asian J Diabetol Jan-Mar 2002:15-18

Lipid Disorders:Implications & Management Ed. Tripathy & Das, 2002

Sethi K.K. Coronary Artery Disease in Indians, 1998

DYSLIPIDEMIA IN INDIA: LATEST DATA FROM THE ICMR-INDIAB STUDY

7.7% of adult population had 3 lipid abnormalities (high cholesterol, high TG and low HDL)

ICMR-INDIAB Study:
covered population across 4 Indian states

- Of the subjects studied, 13.9% had hypercholesterolemia, 29.5% had hypertriglyceridemia, 72.3% had low HDL-C, 11.8% had high LDL-C levels and **79% had abnormalities in one of the lipid parameters.**
- **Low HDL-C was the most common lipid abnormality (72.3%)** in all the four regions studied.

INDIAN DYSLIPIDEMIA IS DIFFERENT FROM ITS WESTERN COUNTERPART IN TERMS OF LIPID PARAMETERS

Comparison of Indian vs. Western Dyslipidemia

Lipid	Relative Serum Concentrations
TC	Similar
LDL-C	Similar (129 Vs 124 mg/dL)
sd-LDL-C	Similar
TG	Higher (174.5 Vs 146 mg/dL)
HDL-C	Lower (40.5 Vs 46.4 mg/dL)
Lp(a)	Higher (29.3 Vs 25.9 mg/dL)

Indians living in the US - 54% of men and 68% of women had low HDL levels. Similarly, 43% of Indian males and 24% Indian females have high TG levels that exceed 150 mg/dL

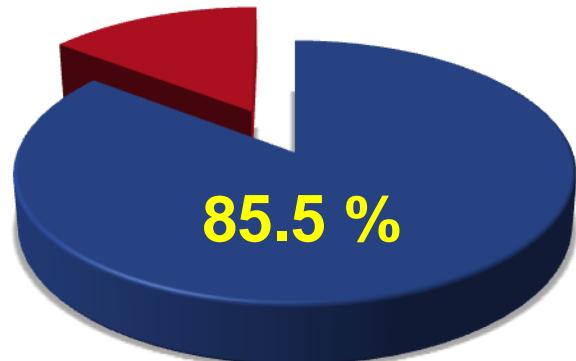
LIFESTYLE AND GENETIC FACTORS ALSO CONTRIBUTE TO HIGHER INCIDENCE OF DYSLIPIDEMIA IN INDIANS

- **Diet**
 - Dyslipidemic profile - seen in vegetarians*
 - Indian diets rich in carbohydrate and low in Omega-3 PUFA- exacerbates hyper-triglyceridemia.*
- **Physical Activity**
 - Asian Indians-more physically inactive: May be due to fast economic development in recent years**
- **Genetic Factors**
 - Abnormal variants of ApoC 3 and ApoE 3 genes common in India[^]
 - Indians have more abdominal adiposity*
 - Thrifty gene to blame too

*Misra & Vikram, *Nutrition*. 2004 May;20(5):482-91

[^]Misra et al, *J Assoc Physicians India* 2004;52:137-42

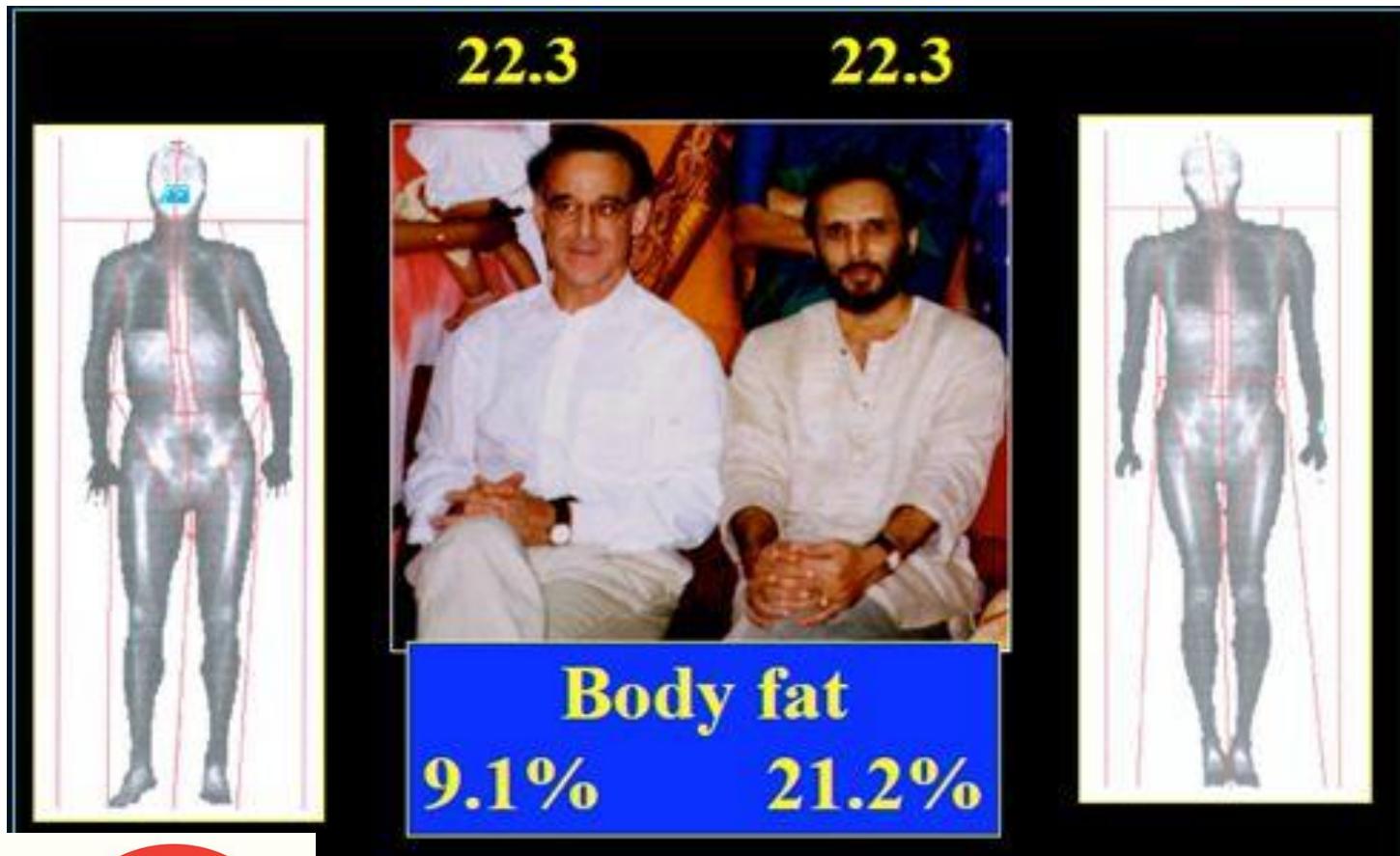
** Talwar & Misra, *J Assoc Physicians India* 2002;50:1521


BESIDES, BODY COMPOSITION OF ASIAN INDIANS MAKES THEM MORE VULNERABLE

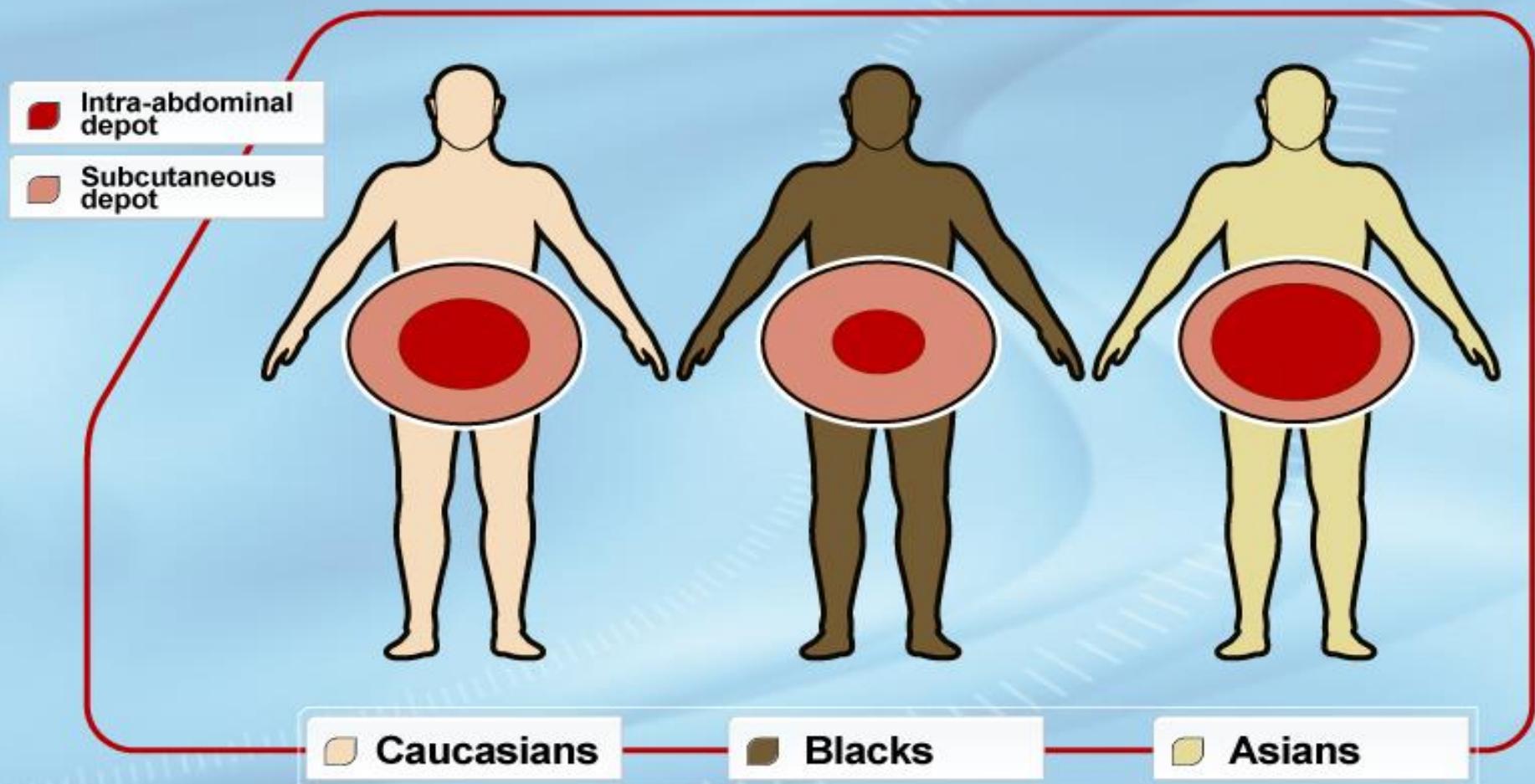
- Shorter height*
- Lower body mass index*
- Excess body fat in relation to body mass index †
- **Abdominal adiposity**
 - High waist-to-hip ratio ‡
 - Normal waist circumference* §
 - High intra-abdominal fat*
- **Truncal adiposity**
 - Thick subscapular skinfold thickness*
 - More abdominal subcutaneous fat*||
- Less lean body mass*¶

“9 OUT OF 10 INDIAN DIABETICS HAVE DYSLIPIDEMIA”

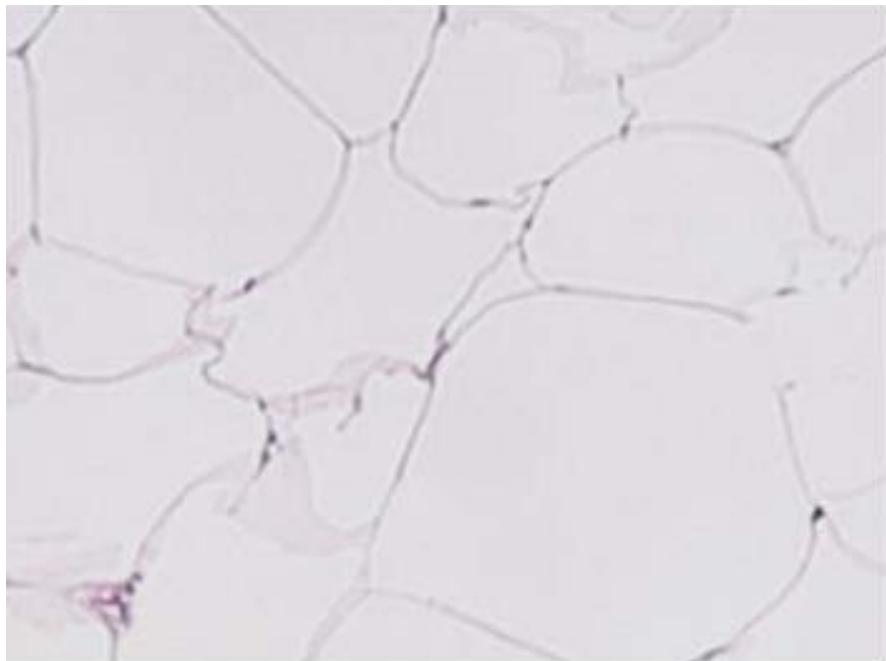
This suggests that there are >55 millions patients of diabetic dyslipidemia in India


Prevalence of Dyslipidemia (%) in Male T2 DM

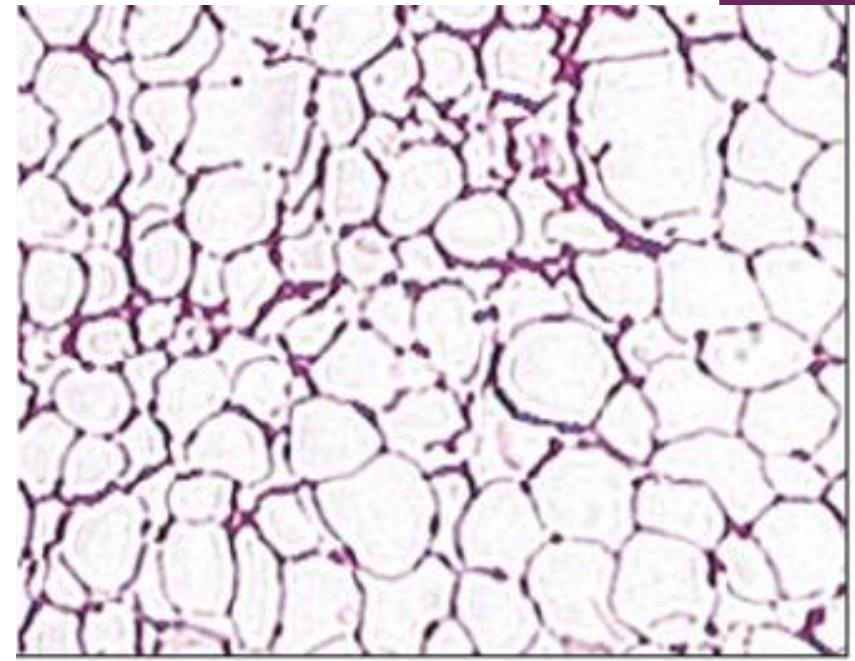
Prevalence of Dyslipidemia (%) in Female T2DM



THE INDIAN OBESITY PARADOX


The Y-Y Paradox. Lancet. 2004;363(9403):163.

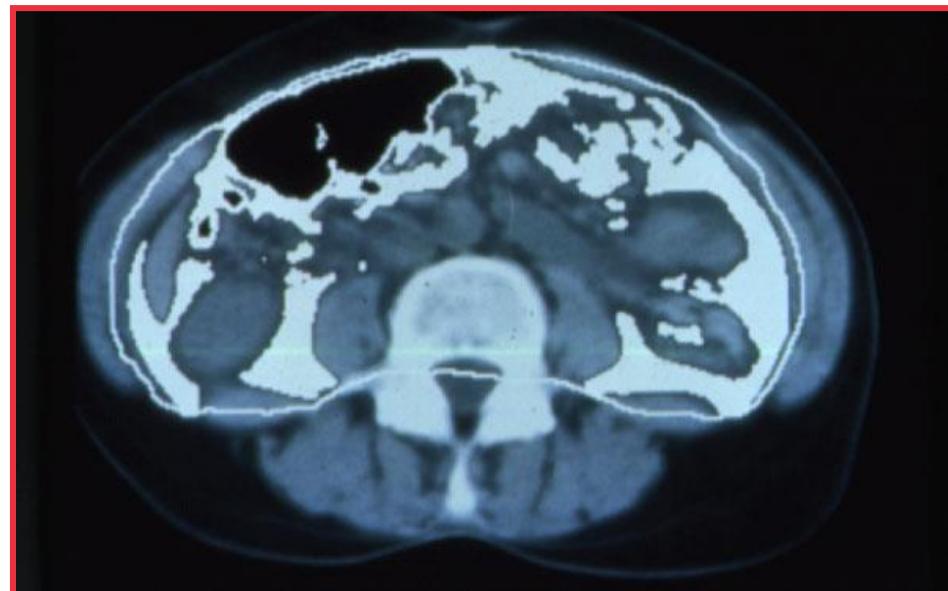
RELATIVE ACCUMULATION OF INTRA-ABDOMINAL VS. SUBCUTANEOUS DEPOT ACCORDING TO ETHNICITY



Mean Adipocyte Size

3491 ± 1393

1648 ± 648



South Asians

White Caucasians

Chandalia *et al.*, *PlosOne*, 2007

TREASURE IN TUMMY

Normal

Central Adiposity

APPROACH TO THE INDIAN DYSLIPIDEMIC PATIENT: THUMB RULES

- Rule out secondary dyslipidemia
- Perform risk assessment
- Encourage smoking cessation
- Control hypertension and diabetes
- Implement therapeutic lifestyle changes
- Achieve LDL-cholesterol goal with statin therapy
- Achieve other lipid (HDL, triglycerides, Non HDL) goals
- Monitor response and adherence to therapy every 4 to 6 months

RISK CALCULATORS

WHO has recently developed a series of risk prediction charts, each dedicated to a different geographic region, including South-East Asia though it has not been systematically validated in prospective studies

Singapore Med. J. 2011;52(2):116-123

WHO Bulletin. 2007

RISK CALCULATORS CONTD

- An alternate approach, is to recalibrate the FRS by multiplying the calculated FRS by a correction factor, specifically derived for a given population.
- The suggested correction factor for Indians :
Rural men 1.0
Rural women 0.8
Urban men 1.81
Urban women 1.54

Consensus Dietary Guidelines for Indians

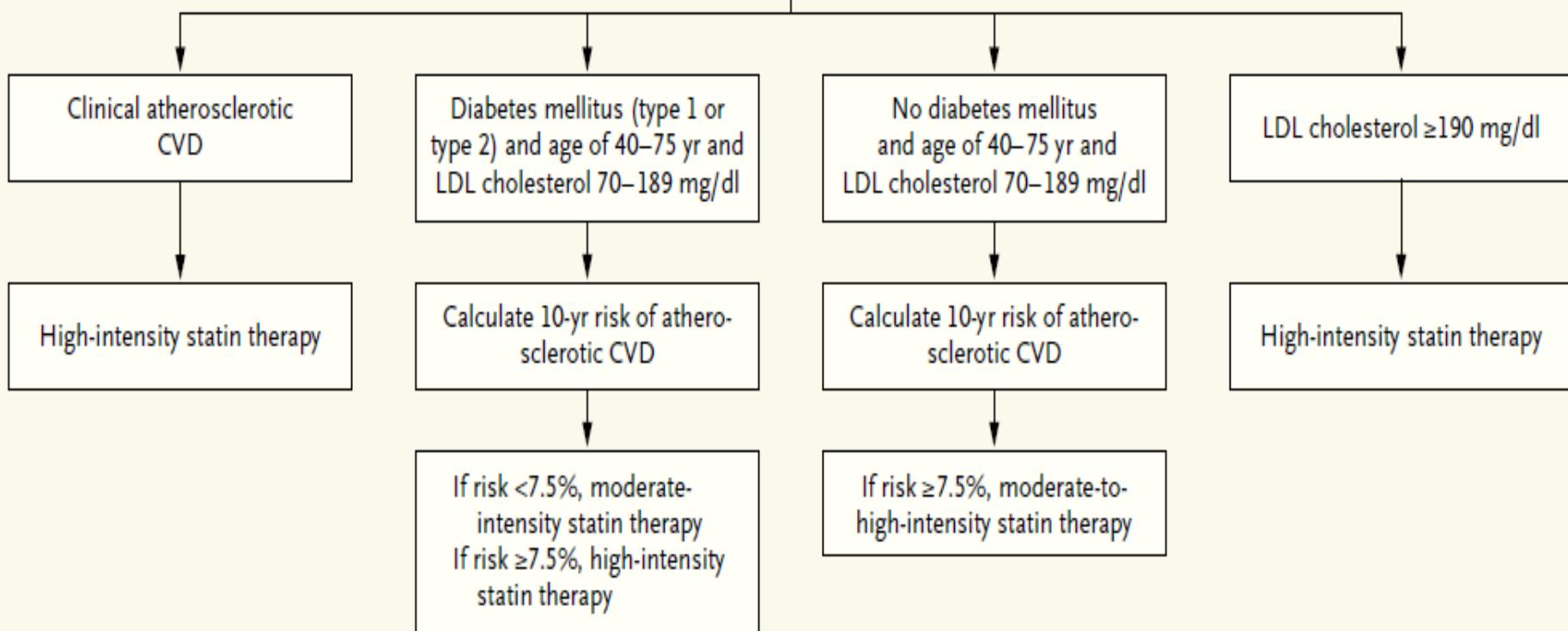
Recommendations

- Reduction in the intake of carbohydrates
- Preferential intake of complex carbohydrates and low glycemic index foods
- Higher intake of fiber
- Lower intake of saturated fats
- Optimal ratio of essential fatty acids
- Reduction in trans fatty acids
- Low intake of salt and restricted intake of sugar

Diabetes Technol Ther. 2011;13(6):683-94.

CONSENSUS PHYSICAL ACTIVITY GUIDELINES FOR ASIAN INDIANS

Guidelines for Physical Activity for Overweight & Obesity


<i>Intensity</i>	<i>Duration</i>	<i>Frequency</i>
Moderate-intensity aerobic exercise	60 min	Daily
Vigorous-intensity exercise	60 min	3 or more days/week

- A total of 60 min of physical activity every day, is recommended for Asian Indians.
- This should include at least 30 min of moderate-intensity aerobic activity, 15 min of work-related activity, and 15 min of muscle-strengthening exercises

2013 ACC/AHA GUIDELINES

Circulation
JOURNAL OF THE AMERICAN HEART ASSOCIATION

Patients >21 yr of age without heart failure (NYHA class II, III, or IV)
or end-stage renal disease (undergoing hemodialysis)
Screen for cardiovascular risk factors
Measure LDL cholesterol

DOSE OF ATORVASTATIN

- Considering the lower body weight , 40 mg of Atorvastatin is advocated by some authorities in India as high dose therapy.
- However CURE-ACS study in Indian ACS patients indicated that atorvastatin 80 mg was more effective and also well tolerated.

ALTERNATIVE TREATMENT STRATEGIES

- Atherogenic dyslipidemia in Asian Indians may be well managed by the use of fibrates along with statins.
- Fibrates along with Simvastatin have shown a favourable trend in those diabetics with hypertriglyceridemia and low HDL in ACCORD Trial.
- Fibrates and ω -3 PUFA also have anti-inflammatory properties, and may be additionally useful in Indians who have high prevalence of subclinical inflammation although there is no hard evidence.

CONCLUSION

- South Asians are facing growing “epidemics” of obesity and dyslipidemia.
- Several factors including rapid urbanization, demographic changes, rural-to-urban migration, faulty diets, sedentary lifestyle, socio-cultural factors along with genetic predisposition have emerged as major contributory factors.
- Obesity in south Asians showed certain distinct features including preponderance of abdominal obesity, more intra-abdominal and truncal subcutaneous adiposity, fat deposition in liver (fatty liver) and skeletal muscles.

CONCLUSION

- One needs to individualize each patient based on clinical judgement and experience.
- Initiation of therapy should be done considering an individual's clinical as well as laboratory parameters including lipid levels.
- The high risk patients should undergo moderate to high intensity statin therapy depending on clinical perspectives.
- LDL-C should be monitored for adequate control, assessing drug compliance

CONCLUSION

- Addition of other drugs needs to be considered once optimal LDL-C lowering is not achieved though there is no strong evidence supporting their use.
- The use of fibrates and other group of drugs in addition to statins also may be appropriate if lipid fractions other than LDL-C are elevated, specially in diabetics and those with atherogenic dyslipidemia.
- Setting a target will lead to better drug monitoring on the part of the physician and also better drug compliance on the part of the patient.